M. Almarshoud, H. Mosavi, R. Alrashidi, M. H. M. Alyami, C. C. Ferraro, H. D. DeFord, and K. A. Riding



In this study, the concrete penetrability properties were measured for both the older test methods and the new resistivity-based test methods.

To consider different materials, four types of cement were used, including an ASTM C150/C150M Type I/II low alkali cement, Type V cement, Type I cement with high alkali content, and an ASTM C595/C595M Type IL cement. Silica fume, slag cement, Class F fly ash, and metakaolin were used as supplementary cementitious material (SCM) in binary and ternary blends with different replacement ratios to evaluate the correlation between electrical and transport properties.

The tests included AASHTO TP 119 for bulk resistivity, AASHTO T 358 for surface resistivity measurement, rapid chloride permeability test (ASTM C1202/C1202M), rapid chloride migration test (NT Build 492), concrete water absorption rate (ASTM C1585/C1585M), concrete volume of permeable voids (ASTM C642/C642M), and a constant-head water permeability test.

The results showed good correlation between the electrical-based tests and water permeability, but poor correlation between the electrical-based tests and the volume of permeable voids.



chloride penetration; concrete durability; electrical resistivity; transport properties; water