Ali Ahmed, Safeer Abbas, Wasim Abbass, Ayesha Waheed, Afia Razzaq, Elimam Ali and Ahmed Farouk Deifalla 5ORCID



The continuous development of the marble industry has led to an increase in the accumulation of waste marble sludge causing landfilling and health-associated issues.

The intention of the current study is to explore the potential of waste marble sludge powder (MS) utilization as a means of controlling alkali-silica reaction (ASR) in concrete. Specimen (cubes, prisms, and mortar bars) were prepared to incorporate reactive aggregates and various proportions of MS ranging from 5% to 40% as a replacement for aggregates.

Expansion and mechanical strength characteristics were determined to investigate the effectiveness of MS to control ASRfor up to 150 days.

Results revealed that on replacing aggregates in the control specimen with 25% MS, the ASR expansion at 14 days reduced from 0.23% to 0.17%, and the expansion at 28 days reduced from 0.28% to 0.17% which is within limits as per American Standard for Testing of Materials (ASTM) C1260.

Furthermore, specimens incorporating MS exhibited improved compressive and flexural strength as compared to the identical specimen without MS. Microstructural analysis using Scanning electron microscopy (SEM) revealed micro-cracks in the control specimen while the specimen incorporating MS was found intact.

Thus, it can be foreseen that the use of MS as a partial replacement of aggregates can control ASR in concrete as well as reduce the dumping and harmful emissions issue.



alkali silica reaction; concrete; durability; expansion; reactive aggregates; waste marble sludge